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The approach to the solution of stabilization problems for steady motions of holonomic mechanical systems [ 1, 2] based on linear 
control theory, combined with the theory of critical cases of stability theory, is used to solve the analogous problems for non- 
holonomic systems. It is assumed that the control forces may affect both cyclic and positional coordinates, where the number r 
of independent control inputs may be considerably less than the number n of degrees of freedom of the system, unlike in many 
other studies (see, e.g., [3--5]), in which as a rule r = n. Several effective new criteria of controllability and observability are 
formulated, based on reducing the problem to a problem of less dimension. Stability analysis is carried out for the trivial solution 
of the complete non-linear system, closed by a selected control. This analysis is a necessary step in solving the stabilization problem 
for steady motion of a non-holonomic system (unlike holonomic systems), since in most cases such a system is not completely 
controllable. © 2002 Elsevier Science Ltd. All rights reserved. 

Some stabilization problems for steady motions of non-holonomic systems have been considered 
previously [6--8], but questions of controllability and observability were not investigated. 

1. FORMULATION OF THE STABILIZATION PROBLEM FOR 
STEADY MOTIONS OF NON-HOLONOMIC 

M E C H A N I C A L  S Y S T E M S  

Consider a non-holonomic mechanical system whose position is defined by generalized coordinates 
ql, -.-, q,- The velocities ql . . . . .  q~ are subject to n - l( l  < n )  time-independent non-holonomic 
constraints 

! 

@z =Xbz~(q)4r (1.1) 
r=l 

Here, are throughout this paper, unless otherwise indicated, the subscripts take the following 
values: i = 1, . . . , k ; p , r , s  = 1 . . . . .  l, ¢x, ~3, y = k + 1 . . . . .  l; ~t = m + 1 . . . .  , n ;  p = l + 1 . . . . .  m;  
Z = I + I  . . . . .  n. 

The equations of motion of a non-holonomic mechanical system will be taken in the form of the 
Voronets equations [9] 

d aO 

d, a@, 
~O & ~O b n t 

X =1+1 $=| X=I+I 
(1.2) 

Where 0 and 0 x are the results of eliminating the quantities qx, using Eqs (1.1), from the expressions 
for T and bT/bqx ,  where T is the kinetic energy of the system 

L __n 
T = X ars(q)qrdts > 0 

2 r,s=t 
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3bx~ abxs " ( abxs abxr 1 = Y~ |bx,,.~-----bx,, 
Vxrs Oq s Oqr X'=t+l~, aq x" ~qz' ) 

t l  

Oxp = a~ + x,~=t+laXX,bx,p 

and Q, and Qx are generalized forces corresponding to the generalized coordinates qr and %. 
Equations (1.2), together with Eqs (1.1), constitute a closed system of order n + l in the variables 

ql . . . . .  q,, t h . . . .  , t~. 
Let us assume that the following conditions are satisfied [10] 

~bxr 
~T.=o.  Qo=O. ...=0. Qrp=Qrp(qr. qr. qp) 
~q, Oq, 

implying that the last n - m  equations of non-holonomic constraints (1.1) are Chaplygin-type constraints 
(the first m - 1 constraints are of general type). 

In addition, suppose some of the generalized coordinates ql . . . . .  q, of the mechanical system are 
cyclic coordinates (CCs). It should be mentioned that, while the definition of CCs for holonomic 
conservative systems automatically guarantees the existence of cyclic integrals in steady motions (SMs), 
there are several definitions of CCs for non-holonomic systems [10]. In that situation, moreover, the 
equations of motion of the system may not have cyclic integrals, though they may admit of SMs. In this 
paper we will adopt the definition of CCs in [10], which guarantees the existence of SMs. We shall assume 
that the coordinates qa are cyclic in the sense of that definition, that is, 

~bpr ~ n 
30. =0,  ' =0,  ... ~ 0~Vxr s =0,  Qi.~t.p =Qi.a.p(qi,ili, ita,qp ) 

3qa 3qa 3qa x=t+l 

The remaining coordinates q, and qp are positional. 
Let us assume that the generalized forces corresponding to the positional coordinates are sums 

of potential, dissipative and control forces; the only generalized forces affecting part of the 
CCs (a  = k + l  . . . . .  k+h) are the control forces; no generalized forces at all affect the other 
CCs ([3 = k + h + l  . . . . .  l). Note that if the control forces affect all the CCs, then h = l - k. Thus, the 
generalized forces may be expressed in the form 

OU a(D OU - - - - - + F ,  
Q' = ~}ql 3q i O3qp 

where U is the force function, q~ is the reduced dissipative function, and the control forces Fj depend 

on the generalized coordinates q, and qp and depend linearly on the control inputs uO)(rl × 1), 

u(2)(r2 X 1), u(3)(r3 X 1), applied along the coordinates qi, qp and qa, respectively. Depending on the 
particular problem under consideration, the controls u 0), u (z), u (3) may be introduced in various ways. 

Information about the values of qi, [1i, {lct and qp is obtained by gauges mounted both on the 
system itself and outside it. The (s x 1)-dimensional vector of measurements is generally a function 
of all the positional coordinates qi and qo and of the cyclic and independent positional velocities q ,  
and t~i. 

Suppose that under certain initial conditions the system may have a steady motion such that the 
positional coordinates and cyclic velocities are constant: 

qi(t) = qio, it,(t) = O, Clot(t) = Clao = c°ct, qp(t) = qpo (1.3) 

In such a case the m constant quantities qio, ?1,~o and//p0 will satisfy m equations, which will not be written 
out here. 

Consequently, in the general case the SM may turn out to be isolated. In some cases, given various 
additional assumptions on the coefficients of the equations of the non-holonomic constraints, the kinetic 
energy and the generalized forces, a manifold of SMs may exist [9, 10]. We shall assume that the control 
forces vanish on a SM. 
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The stabilization problem for a SM is as follows: By a suitable choice of the control inputs, applied 
along both cyclic and positional coordinates (or part of those coordinates), it is required to make SM 
(1.3) asymptotically stable (or simply stable) with respect to the positional coordinates q, and qp, 
positional velocities qi and cyclic velocities qc,. The optimal stabilization problem for a SM may be 
formulated in analogous terms. The special feature of the formulation of the stabilization problem for 
SMs of non-holonomic systems (as of the stability problem) is that the constraint equations occur in 
the structure of the system of equations of perturbed motion (except in the case of Chaplygin systems). 

We now introduce the errors 

xl = q, - q,0, Y,~ = ilo~ - 0~¢~, Zp = qo - %0 (1.4) 

and with the equations of perturbed motion on the basis of Eqs (1.1) and (1.2) in terms of the variables 
x ( k  x 1), y(( l  - k) x 1), z ( (m  - l) x 1), with the linear terms written separately 

A J? + C3) = Wix + Dr-'? + PlY + Vlz + F(l)u(I) + DT3 F(2)u(2) + X(x ,  J¢, y, Z) 

Cr  2 + By = W2x + Dz:c + P2Y + V2z + F(3)u(3) + P3 r Ft2)u(2) + Y(x, x, y, z) (1.5) 

= W3x + D3"ic + P3Y + V3Z + Z(x,  .ic, y, Z) 

The formulae for the elements of the matricesA, B . . . .  are similar to the appropriate formulae in previous 
studies [10]; X, Y and Z are vector-functions containing terms of order greater than one in the newly 
introduced variables. 

System (1.5) has the most general structure, special cases of which are the equations of perturbed 
motions in a neighbourhood of! 

1. the equilibrium positions of a holonomic system (k = l = n = rn, y --- 0, z = 0); 
2. the equilibrium positions of a non-holonomic system with constraints of general form (l = k, 

m = n ,  y -= 0);  
3. SMs of holonomic systems (l = n, z -- 0); 
4. SMs of non-holonomic Chaplygin systems (m = l, z - 0). 
Under specific conditions, which arise in different problems, the structure of the equations of 

perturbed motion (1.5) may be simplified considerably. The additional conditions most commonly 
adopted in analysing the stability of SMs of non-holonomic systems, when there are no control forces, 
are the following [10]. 

b~a = 0 (Condition 1), ~ 0~l~v~ = 0 (Condition 2) (1.6) 
ll=m+l 

If condition 1 is satisfied, then P2,/'3, W3 and 1:3 in Eqs (1.5) are zero matrices, while the zero matrices 
in the case when Condition 2 is satisfied are Pz and P3- But if both Conditions 1 and 2 hold, the equations 
corresponding to CCs and the equations corresponding to the equations of the non-holonomic 
constraints do not contain linear terms in the variables x,, ya and zp, that is, P: = 0, IV:: = 0, Vs. = 0 
( j  = 2,  3) .  

The equation of measurements may be written in the form 

O= Htx  + H2.,;c + H3y+ H4z (1.7) 

where o(s x 1) is the linear part of the measurement vector and H1 . . . .  , //4 are constant matrices of 
the appropriate dimensions. 

The linearized equations of motion in the form (1.5) and the equation of measurements (1.7) are 
fundamental for solving the stabilization problem for steady motions of non-holonomic systems with 
time-independent constraints. 

The solution of the stabilization problem [1, 2] involves: 
1. determining the basic possibilities of stabilization, which reduces to investigating the controllability 

of system (1.5); 
2. determining the rational composition of measurement information on the state of the system (the 

quantities x, y,,t and z), necessary in order to construct a stabilizing control, which reduces to analysing 
the observability of system (1.5), (1.7); 

3. constructing the stabilization algorithm itself, e.g., by estimating the state vector of the system, 
which is constructed using the previously determined measurement information [1]; 

4. analysing the stability of the non-linear system closed by a selected linear control. 
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2. CONTROLLABILITY 

For direct application of known controllability criteria [13, 14] to system (1.5), written in Cauchy form, 
one must investigate the ranks of complicated matrices of high orders. 

To investigate the controllability of system (1.5), we introduce variables 

rl= By + Cr x - ( D 2  - P2B-Icr)x, ~ = z - ( D  3 - P3B-zcr)x 

and transform the linearized system (1.5) to the form 

SJ~ + NJc + Kx + M~r I + M.~ = F(1)u (1) + Dr4 F(2)u (:z) - CB-t F(3)u (3) 

fi = R~x + l.'.-,t~-'rl + vz; + l':'r F(:'>u (z) + M3)u (3) 
(2.1) 

= R2x + P3B-~ + v3~ (2.2) 

where 

S = S  r>O, S = A - C B - Z C  r, D 4 = D  3-P3B-~C r, D s = D  2-P2B-IC r 

N = CB-t Ds + PIB-ICT - DI, K = -WI - PIB-t Ds + CB-~ RI - VtD4 

Mt =(CB-t P2 - PI)B -t, M2 = CB-IV2 - VI 

RI = W2 + V2D3 + P2B-I Os, R2 = W3 + V3D4 + P3B-I D5 

Using the controllability criteria of [14] one can prove the following. 

Theorem 1. System (2.1), (2.2) is controllable if and only if 

/_q(k) M I M 2 

rank - R  I %Et_ k - P2B -t - V  2 

-R2 - ~ B - '  Le,._j - % 

F(') Dr F(2~ - CB-~ F°) II 
0 p3TF (2) F (3) = m, 

0 0 0 

A=Iki  :det[L(~.)]=0}, /~(~,)=SX 2 +N'k+K 

L0.) = -Ri hEr_ ~ - P2B -I -V 2 

-R2 -P3B -~ X~,._t-v3 

~'7~E A 

Note that controllability of system (2.1), (2.2) (that is, satisfaction of the conditions of Theorem 1) 
may be achieved, generally speaking, when only one of the control inputs u 0), u (2), u 0) is present. 

If conditions (1.6) are satisfied, the special features of the structure of system (1.5) enables one to 
obtain new, effective controllability criteria by reducing the problem to systems of lower order. 

Controllability of  system (1.5) when Condition I is satisfied. It follows from the structure of Eqs (2.1) 
and (2.2) that, if Condition 1 of (1.6) is satisfied, system (1.5) splits into two subsystems (R2 = 0), the 
second of which, corresponding to the equations of the non-holonomic constraints, is uncontrollable. 
Thus, given any control forces, the system is uncontrollable with respect to the variables 4, which 
correspond to the positional variables whose velocities are dependent because of the constraint 
equations. This is a special feature of systems with non-holonomic constraints compared with holonomic 
constraints. 

Application of the controllability criterion of [14] to subsystem (2.1) (with ~ - 0), allowing for the 
special structure of the system, and the use of equivalent transformations enable one, via reduction, to 
prove the following theorem, in which the conditions for controllability of a system of order k + I reduce 
to verification of ranks of matrices of order k. 

Theorem 2. System (2.1) of order k + I is controllable if and only if the following conditions are satisfied 
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, 0 0 0 F(3) ii=k, if ~ . = 0 e A  2 
I I  

rankll/-a0.), F "), D rF(2), CB-IF (3) I1 = k, VX ~ 0 ¢ A 2 

Controllability of  system (1.5) when both Cond#ions 1 and 2 are satisfied. 
Suppose both conditions of (1.6) are satisfied. Let us split the vector 11 into parts 

× . .  

depending on which CCs are subject to control inputs and which are not. Here hi is the number of 
control inputs applied along the CCs. We represent the matrix F(3)((/-  k) x hi) in the form 

where Ehl(hl x h~) is the identity matrix. 
Note that if the control inputs affect all the CCs and they are all independent, then F (3) is the identity 

matrix of order 1 - k. 
Introducing a new variable ~ = r h -F(4)rll, we write Eqs (2.1) in the form 

$57 + NJc + Kx - PtB -I F(3)rll = F°)u (]) + Df  F(2)u (2) + CB-I F(3)u (3), 1]1 = u (3) (2.3) 

= O, i13 = 0 (2.4) 

Obviously, subsystem (2.4) is uncontrollable, the corresponding roots of the characteristic equation 
being zero. The influence of the control inputs u 0) applied along the CCs q on controllability with respect 
to positional coordinates depends essentially on the nature of the matrices C and Pv 

The case P1 =- 0, C * 0. Using the previously proposed criterion of [14] and taking the structure of 
the system into account, together with the spectrum of its eigenvalues 

L e A I , ~ = 0 ;  Aj ={X, :detILt(X)]=0 } 

one can prove the following theorems. 

Theorem 3. System (2.3) of order 2k + hi with P1 -= 0 is controllable if and only if the following system 
of order 2k is controllable 

SJ? + NJc + Kx = F°)u tt) + Df F(2)u (2) - CB-I Ft3)u(3) 

and moreover 

rank ]K, Fd) , D3TFt2)~=k 

Theorem 4. System (2.3) of order 2k + h 1 with P1 -= 0 is controllable if and only if 

For one of  the most common formulations of the control problem for a system with CCs [15], when 
the controls are applied only along CCs (or some of them), we have the following corollary. 

Corollary 1. If the control inputs act only along CCs (F O) -= 0, F (:) -= 0), then system (2.3) of order 
2k + h 1 with P1 - 0 is controllable if and only if 
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detK ~ 0  and 

The case P1 =-- 0, C - 0. In this case system (2.3) splits into two independent subsystems, the second 
of which is completely controllable. 

Corollary 2. In the case when P1 -= 0, C -- 0, system (2.3) of order 2k + hi is controllable ff and 
only if 

(a) rank [L1(~), F 0), D3rF (2)] = k, '¢k ~ A1 or 
(b) the control inputs are applied along all positional coordinates whose velocities are independent 

because of the constraint equations (F (0 = Ek). 
Thus, a necessary condition for controllability of system (2.3) in the case when P1 - 0, C -- 0, is that 

the control inputs affect the positional coordinates, and moreover the controllability may be achieved 
by applying the controls both to those positional coordinates whose velocities are independent, and to 
those whose velocities are dependent because of the constraint equations. 

The case P~ ~ O, C = O. In this case system (2.3) may be considered as a system consisting of subsystems 
connected in series, one of which is obviously controllable. Then, introducing an auxiliary control vector 
w of order hi, we can prove the following theorem. 

Theorem 5. A necessary and sufficient condition for system (2.3) of order 2k + h~ in the case when 
C - 0 to be controllable is that the following system of order 2k be controllable 

S)i + Nk + Kx = F")u ") + Dr Ft2~u ~2) + P~B-~ F°)w (2.5) 

Using previous results [16], one can show that system (2.5) is controllable if and only if 

The case P1 ~ 0, C ;~ 0. In this case it cannot be proved that the question of whether system (2.3) is 
controllable can be reduced to analysing a system of lower order, as in Theorem 3. The following theorem 
may be proved by arguments similar to those used to prove Theorem 4. 

Theorem 6. System (2.3) of order 2k + ha is controllable if and only if 

VX 

Now, using Theorem 6, one can prove the following reduction theorem. 

Theorem 7. System (2.3) of order 2k + hi is controllable if and only if the system 

SJi + Nrk  + K r x = o  

of order 2k is observable by measurements 

II :,T II P'2'T°  II, 
G = H~x+ H2./:; Hi = -F<3)TB-IP~ r II H2 = 

0 

0 
_F(3)r B-ICr 

Corollary. If the control inputs act only along all the CCs and they are independent (F 0) = 0, 
F (2) = 0,  F (3) = El_k), then system (2.3) of order 2k + hi is controllable if and only if 

Similar theorems concerning reduction of the controllability problem and controllability criteria may 
be formulated when Condition 2 is satisfied. 
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3. O B S E R V A B I L I T Y  

In order to solve the stabilization problem for non-holonomic mechanical systems by designing controls 
in the form of linear feedback, one must have information on the state of the system, obtained from 
various measuring instruments. The question of the minimum amount of accessible measurement 
information necessary to determine the full state vector of the system is of practical interest. It should 
be borne in mind that positional coordinates, positional velocities and cyclic velocities are measured 
by different instruments. 

If Conditions 1 and 2 are satisfied, the special structure of the system makes it possible, as in 
controllability analysis, to reduce the problem, thereby obtaining new, simpler and effective 
observability criteria. 

Here we will limit ourselves to observability conditions for system (I.5) in the case when Conditions 
1 and 2 are satisfied by measurements 

~j = Hix+H2jc, crl(s I x I) (3.1) 

02 = H3Y, (r2(s2 x I) 

It is assumed that the matrices H1 (Slx k), Ha(s1 x k), H3(s2 x (l-k)) are of full rank. 

(3.2) 

Theorem 8. System (1.5), (3.1) is observable if and only if the following conditions are satisfied. 

II L,(L) II=k ' V ~ . ~ A , ; r a n k H l = k ,  ranklPiB-' Vll l=m-k (3.3) rank H~ + ~ /2  

For the proof, it is convenient, as at the beginning of Section 2 to introduce variables ~ and rh as 
well as a variable X = PIB-~rl + VI~, and to express system (1.5) in the form 

S~+N.~+Kx-z=O, Z = 0  

It is important to stress that a necessary condition for conditions (3.3) to hold is that sl = k (the number 
sl of measurements (3.3) equals the number of positional coordinates x), that is, all the positional 
coordinates must be measured. A necessary condition for observability of the vector Z to imply 
observability of the variables ~ and 4, is that k />  m - k, i.e. the number k of positional coordinates 
must be not less than the sum of the number of cyclic coordinates and the number of non-holonomic 
constraints of general type. 

It is obvious that system (1.5) is non-observable by measurement of only positional velocities 
(H1 = 0). It can be shown that system (1.5) cannot be completely observable even by measurement (3.2). 

Remark. If the stabilization problem for steady motions of a non-holonomic mechanical system is limited to the 
achievement of non-asymptotic stability, there is no need to estimate the entire state vector. It may therefore be 
convenient to estimate only that part of the vector of cyclic velocities (see Sections 2) affected by the control input. 

If t~ 1 and (r 2 are being measured, the first and second observability conditions of Theorem 8 are 
retained, but the third becomes 

H3 --m-k0 

4. AN A L G O R I T H M  FOR THE S T A B I L I Z A T I O N  OF STEADY M O T I O N S  
AND I N V E S T I G A T I O N  OF S T A B I L I T Y  OF THE C L O S E D  SYSTEM 

In the general case, the initial linearized system (1.5), (1.7) may be controllable and observable. One 
can then construct a feedback control based on estimation of the state vector in such a way as to make 
the trivial solution of the complete closed non-linear system asymptotically stable. 

However, in the most common cases, as indicated in Sections 2 and 3, system (1.5), (1.7) is not 
completely controllable and observable. It is generally impossible, therefore, to guarantee asymptotic 
stability of a steady motion (1.3) by introducing feedback based on estimation of the state vector. In 
these case, having constructed a control for the controllable subsystem, one must analyse the stability 
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of the trivial solution of the complete closed non-linear system (Lyapunov's theorem of stability in the 
first approximation is not applicable in this case). 

Suppose conditions 1 and 2 are satisfied. As shown in Section 2, system (1.5) splits into two subsystems. 
One of them corresponds to the zero roots of the characteristic equation. If the assumptions of 
Theorems 4--6 hold, subsystem (2.3) is controllable and one can construct a control for it in the form 

u (j) = - K j i x -  Kj2Jc - Kj3"I'II, j = 1,2,3 (4.1) 

where ~ i  are constant matrices of appropriate orders, chosen subject to the conditions for asymptotic 
stability of system (2.3) closed by control (4.1). 

If the observability conditions of Theorem 8 are satisfied, one can design a linear feedback based on 
an estimation of the state vector of the system, in the form 

u (j) = - K l l x  - Kj2~¢ - K13 ~, j = 1,2,3 (4.2) 

~, ~c, ~ being estimates of the vectors x, 2 and y obtained, for example, from the estimation algorithm 

~v = AwCV + Lw(¢; - CwCv)+ Bwu, w = colLxr,~r,yr, z r ] (4.3) 

where o = Cw w is a measurement with respect to which the system is observable. The matrix of the 
gains Lw is determined based on some criterion for smallness of the estimation error Aw = w = ft. The 
estimation error Aw must satisfy the equation 

whose characteristic polynomial may be prescribed in advance, if the system is observable, by a suitable 
choice of the constant matrix of the filter gains Lw. In particular, if there are random measurement 
errors, the matrix Lw can be chosen so as to minimize the variance of the estimation error Aw. The 
closed controllable system is then described by relations (2.3), (4.2) and (4.3). 

Let us investigate the stability of the trivial solution of the complete system (2.1), (2.2), closed by a 
linear control, on the assumption that subsystem (2.3) is completely controllable and the controls 
u 0), u (2) and u (3) have the form of (4.2). 

The characteristic equation of the linear system (2.1), (2.2) closed by control (4.2) has m - (k + h~) 
zero roots, while the others lie in the left half-plane. It can be shown that this system may be reduced 
to a form which corresponds completely to the special case of several zero roots, and the Lyapunov- 
Malkin theorem [10, 17], according to which the trivial solution of the system is stable, will hold. Under  
those conditions any perturbed motion sufficiently close to the unperturbed motion will approach one 
of the possible SMs as t ~ oo. 

Note that questions of the stability of the full linear system closed by a linear control affecting only 
the cyclic coordinates or some of them, when Conditions 1 and 2 are satisfied, have been considered 
previously [81 . 

5. E X A M P L E  

Let us consider the classical problem of the motion of a Chaplygin sleigh moving along an inclined surface 
[9]. A heavy rigid body rests on an inclined plane P supported on three knife-edges, two of which are 
absolutely smooth and the third is equipped with a semicircular blade. The projection of the mass centre 
of the body onto the plane P lies on a straight line perpendicular to the blade and passing through the 
point K at which the blade touches the plane.P. The generalized coordinates will be the Cartesian 
coordinates ~1 and ~2 of the point K (where the ~1 axis is parallel to the horizontal plane and the 
~2 axis is directed upward with respect to the supporting plane P) and the angle of rotation (p of the 
body about a straight line perpendicular to the plane P. A non-holonomic constraint, expressing the 
condition that the body does not slide in the direction orthogonal to the plane of the blade, is described 
by the equation ~2 = ~1 tg to. The Lagrangian has the form 

L= +,,cos,)2 . , , s i ° , ) 2 .  mgsi° _,cos , 

where m is the mass, k is the radius of inertia, ct is the inclination of the plane, and l is the distance 
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from the projection of the mass centre onto the plane P to the point K. As has been observed [10], the 
above constraint is not of Chaplygin type. It can be verified that the equations of motion admit of a 
steady motion 

tp(t)=qo 0 (q~0=0,~), ~o(t)=0, ~z=v ,  ~2=~20 (5.1) 

representing uniform translation of the body with velocity v, with the blade moving parallel to the ~1 
axis. In this case Condition 1 holds only in steady motion. The equations in Voronets form, linearized 
in the neighbourhood of this steady motion, have the form (1.5) 

p2.~ + l~y + glSsin txx = b~u I 

1~ + j~ + gsin otx = b2u 3 

~= vx 

where 

x = t p - t p  O, y = ~ l - V ,  z = ~ 2 - ~ 2 0 ;  5=costp  0, p 2 =1 2 +k 2  

and blux and b2u 3 are the linear parts of the control inputs acting along the positional and cyclic 
coordinates, respectively. 

By Theorem 1, the system is controllable if blb2v ;~ O. This means that the equilibrium position 
is not controllable (v ~ 0) and that both positional and cyclic coordinates must be subject to 
controls. 

One can then construct a feedback control with respect to all the variables x, k, y and z which 
guarantees asymptotic stability of solutions (5.1) for the complete non-linear system of equations of 
the perturbed motion (by Lyapunov's theorem of stability in the first approximation [17]). 

If the control is introduced only along the cyclic coordinate (ut - 0), the system is not completely 
controllable and, introducing variables 

= lSgsin otz + v(p2k + ~ly), 1] = l~J: + y 

one can reduce the system to the form (2.1), (2.2): 

k2~ i=-~ tu2 ,  ~ = - g s i n t x x + u  2, ~ = 0  

By Theorem 2, subsystem (2.1) is controllable with respect to the variables x, .f, and rl if l sin c~ ;~ 0. 
If a control (4.1) is constructed, the Lyapunov-Malkin theorem [17] will guarantee stability of solutions 
(5.1) with respect to all the variablesx, ~?, y andz for the complete linear system of equations of perturbed 
motion. 

This research was partially supported by the Russian Foundation for Basic Research (00-01-00391) 
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